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Abstract--Steady-state natural convection over a sphere has been studied numerically. Heat transfer and 
drag coefficients for a wide range of Grashof numbers (10 ~ ~< Gr <~ 108) and Prandlt numbers 0.72 and 7.0 
have been obtained. A plume with a mushroom-shaped front forms above the sphere whose length and 
thickness decrease with increasing Gr. At high Gr (Gr >~ 10 7 and Pr = 0.72), flow separation and an 
associated recirculation vortex exist in the wake of the sphere. The vortex size increases with Gr. The local 
Nusselt number along the sphere surface first decreases, reaches a minimum, and then increases steeply at 

the rear of the sphere. 

1. INTRODUCTION 

Studies on natural convection over a sphere are of  
interest in many engineering processes, such as vapo- 
rization and condensation of  fuel droplets, manu- 
facturing systems, such as in packed beds of  spherical 
bodies for heat transfer, and in many electronic com- 
ponents that are nearly spherical [1]. It is also of  
interest for the electrodynamic balance device which 
may be used as a tool for studying single particle high 
temperature gas-solid reactions. In addition to the 
weight of  the particle and the force due to the electric 
field, the vertical force due to natural convection con- 
tributes to the balance of  the particle and needs to 
be considered while interpreting the particle weight 
change data [2]. 

Early analytical works on natural convection over 
a sphere have been conducted only for the limiting 
cases of  either high Grashof  number (Gr) by using 
boundary layer assumptions [3-8], which are invalid 
in the wake of  the sphere, or very small Grashof  num- 
ber by employing asymptotic expansion techniques 
[9-111. 

Geoola  and Cornish [12] were the first to solve 
numerically, natural convection heat transfer over a 
sphere employing the full steady Navier-Stokes equa- 
tions. The authors presented temperature and stream- 
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line contours, local and overall Nusselt numbers and 
drag coefficient (CD) for Grashof  numbers in the range 
0.05 ~< Gr <~ 50 and for Prandtl number Pr = 0.72. In 
a successive paper [13], transient results of  Nusselt 
number and drag coefficient were presented. The study 
provided calculations for Grashof  number up to 
12 500 and Prandtl number of  0.72, 10 and 100. Their  
calculated temperature contours, however, did not  
feature the mushroom-shaped front, which has been 
observed experimentally [14]. Farouk [15] solved the 
complete steady-state Navier-Stokes equations to 
obtain local and overall heat transfer results for a wide 
range of  Rayleigh numbers, 10 -~ < RaD < 105. Fujii 
et al. [16] provided a numerical solution of  transient 
laminar free convection around an isothermal sphere 
for Rap = 100 and Pr = 0.7. Riley [17] obtained tran- 
sient numerical solutions for Pr = 0.72 and 7.0 and 
102 ~< Gr <~ 104. Non-monotonic  temperature profiles 
along the upper axis of  symmetry were predicted. 
Dudek et al. [2] obtained drag coefficients both 
numerically and experimentally for a range of  small 
Grashof  numbers (4 × 10 -4 < Gr < 0.5). 

The above brief literature review on steady-state 
natural convection heat transfer over a sphere, reveals 
that all numerical studies available in the literature 
have been conducted for Gr ~< 104. Experimental work 
has shown that transition to turbulence occurs at 
Gr = O ( 1 0 9 ) .  The goal of  the present work is to carry 
numerical simulations for Grashof  number ranging 
up to the transition value. At  these large Grashof  
numbers the problem becomes computationally 
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NOMENCLATURE 

I 2 CD total drag coefficient (FD/?pvTofA) 
CD, P pressure drag coefficient 
CD,, viscous drag coefficient 
Gr Grashof number (R2gfl(Ts - T~)/v 2) 
n number of grids 
Nu Nusselt number (hD/k) 
~Tu overall Nusselt number 
p pressure ; motion pressure 
Pe Peclet number (Dv/c 0 
Pr Prandtl number (v/e) 
r radial coordinate 
r' nondimensional radial coordinate 
R radius of the sphere 
Ra Rayleigh number (GrPr) 
Re Reynolds number (vD/v) 
R~, relaxation factor used in GSSI 
s tangential coordinate ; 

nondimensional tangential coordinate 
t time ; nondimensional time 
T temperature 
v velocity vector 
Vref natural convection velocity 

(Grl/Zv/R) 
v velocity 
z transformed nondimensional 

coordinate in r direction, where 
r' = e : -  1. 

Greek symbols 
c~ thermal diffusivity = k/pcp 
fl volumetric coefficient of expansion 

with temperature = - 1/p~ (Op/OT)p 
6T thermal boundary layer thickness 
A size of the grid 
e convergence criterion 
0 tangential coordinate 
v kinematic viscosity 
p density 
~b nondimensional temperature 
~, nondimensional stream function 
~o nondimensional vorticity in azimuthal 

direction. 

Subscripts 
0 front stagnation point 
D diameter of the sphere ; drag 
s surface of the sphere ; dimensionless 

tangential coordinate 
z dimensionless radial coordinate 
oe ambient conditions. 

Superscripts 
' dimensionless coordinates. 

demanding. First, more grid points need to be clus- 
tered in the vicinity of the sphere surface to resolve the 
thin boundary layer. Second, contrary to the forced 
convection problem past a sphere where a smaller 
'computational infinity' can be employed with increas- 
ing Reynolds number, in buoyancy flows resolution 
of the plume present in the wake of the sphere requires 
that the 'computational infinity' remains large. The 
literature [12, 13] reveals that, due to the above con- 
siderations, only results for small and moderate Gra- 
shof numbers have been reported. 

With regards to experimental work, a number of 
studies have been conducted. In [18-21] a wide range 
of Grashof numbers were considered, and overall 
Nusselt numbers (Nu) were presented. Kranse and 
Schenk [22] studied free convection induced by the 
melting of a solid benzene sphere in benzene liquid. 
For 108 < Gro < 109, they found that the local Nusselt 
number first decreases with 0 (the tangential angle 
from the front stagnation point), reaches a minimum 
and increases thereafter. Hydrodynamic separation 
was observed and the separation point was found to be 
around 140-150 ° . They speculated that the separation 
point must coincide with the minimum in the Nusselt 
number. Schenk and Schenkels [23] conducted an 
experiment of an ice sphere melting in water. For 
water temperatures higher than 6°C and lower than 

10°C (a temperature range within which there is no 
anomalous density variation and irregular flow pat- 
terns are not present) a minimum in the Nusselt num- 
ber was also found and flow separation ahead of the 
rear stagnation point was observed. 

Jaluria and Gebhart [24] investigated exper- 
imentally natural convection over an upright hemi- 
sphere in water. A rapid thickening of the boundary 
layer region and a sharp increase in the tangential 
velocity near the top of the hemisphere was reported. 
The Nusselt number measured decreased with 0 to a 
minimum and then showed a sharp increase near the 
top of the sphere. It was observed that the heated fluid 
was simply realigned upward and rose in a steady, 
developing and axisymmetric buoyant plume. The 
increased velocity levels due to this realignment of the 
flow was given as the cause of the sharp increase in 
the Nusselt number near the top of the sphere. No 
flow reversal on the top of the sphere was observed. 

Furthermore, correlations and approximate ana- 
lytical methods that provide results for a wide range 
of Grashof or Rayleigh numbers and for all Prandtl 
numbers have been developed in refs. [21 and 25-27]. 

The goal of the present study is to solve numerically 
the complete Navier-Stokes equations for natural 
convective flow between a solid sphere and the 
ambient over a wide range of Grashof numbers 
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(10 ~ ~< Gr <<. 108) and for Prandtl numbers of 0.72 and 
7.0. Our numerical :simulations for Grashof numbers 
close to the critical value for transition to turbulence 
reveal that boundary layer separation at the top of 
the sphere, with associated flow reversal, does occur. 
The presence of the vortex is responsible for the sharp 
increase in the local Nusselt number near the top of 
the sphere. The overall Nusselt number and the drag 
coefficient as a function of Grashof number and pro- 
files for local Nusselt number, pressure, vorticity and 
velocity components are presented. 

The original motivation of this work is to study the 
effect of natural con vection on evaporating droplets at 
high ambient pressures and temperatures. The present 
study is a first step in this research effort. 

2. PROI:|LEM FORMULATION 

Y 

O=g 

, ,°°'° ° . . . . . . . . . . . . . . . .  

Z ~ 

X 

Natural convection around a sphere whose tem- 
perature is higher than that of its ambient is for- 
mulated next. Due Io the buoyancy effect, an upward 
axisymmetric flow is induced near the sphere surface. 
At the top of the sphere, hot fluid rises and forms into 
an evolving plume. The Navier-Stokes equations for 
an incompressible fluid with constant properties, 
which governs such a flow field, can be written in a 
vector form 

V - v = 0  (1) 

0=0 

Fig. 1. The modified spherical coordinate. 

defined as 

R3gf l (Ts -T~)  l(O~T)p 
v 2 , ~ = - p ~  

~ ¥  
p~-~ +p(v 'V)v = - V p + F + p V 2 v  (2) 

~T 
pep ~ -+- pCp(V • V) T = kV 2 T, (3) 

where v is the velocity vector, F is the body force, p is 
the density, t is the', time, p is the pressure, T is the 
temperature and p, Cp and k are viscosity, heat capacity 
at constant pressure and thermal conductivity, respec- 
tively. Viscous dissipation has been neglected in the 
energy equation. The transient terms are included, 
since the numerical solution is obtained by a false 
transient algorithm. 

The equations can be cast into a stream function- 
vorticity formulation in a modified spherical coor- 
dinate (see Fig. 1). In Fig. 1, R is the radius of the 
sphere, r is the normal coordinate originating from 
the sphere surface, s is the tangential coordinate on 
the surface starting from the lower stagnation point 
and ~0 is the azimuthal angle. Variables are rendered 
dimensionless using the following scaling parameters : 
R for distance, Ure f == Grl/2v/R for velocities, R/vre f for 
time and ½PeeV2ef for pressure. The dimensionless tem- 
perature 

T m T e e  

vs-  
In the above expressions, Gr is the Grashof number, 

is the coefficient of thermal expansion of the fluid, 
v is the kinematic viscosity, g is the gravitational 
acceleration and Ts and Tee are temperatures at the 
sphere surface and the ambient, respectively. The 
following coordinate transformation is introduced: 
r" = r/R = e ~ -  1. In view of this transformation, using 
constant step size Az, the grid points in the physical 
domain are clustered near the sphere surface where 
gradients are steep, and the outer boundary can be 
kept far away with a small number of grid points. 

Next, the governing equations are presented in a 
nondimensional form. The vorticity stream function 
relation is given by 

e 
sin s 

where e) is the single nonzero component of the vor- 
ticity in the azimuthal direction and ~ is the stream 
function which is related to the velocity components 
as follows : 

Vz (5) 
e 2z sin s Os 

1 04, 
vs eZZsin s & .  (6) 

The Navier-Stokes equations are converted into a 
vorticity transport equation in the form 
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a 2z a ~s (e m) + ~z (eZv/°) + (e"vsm) 

l a /  am\ 1 O( &o) 
- Gr'/2 az~ m+ ~z) + Gr '~ as (cots)m+ ~-s 

where the last term is the buoyancy term. The Bous- 
sinesq assumptions have been employed in deriving 
this equation. 

The energy equation is expressed as 

8 8 2z 
(e 3~ (sin s)~b) + ~ (e (sin s)vd~) 

+ (e2-'(sins)v~b) - PrGr I;2 az e~'sins 

+PrGr ~/20s e"sins . (8) 

The above governing equations are subjected to the 
following boundary conditions. At the sphere surface, 
where z = 0, no-slip condition and uniform tem- 
perature are considered 

a0 a0 1 a20 
O = 0  ~ s = °  ~ - z = °  m s i n s a z  2 4 = 1 .  

(9) 

At the axis of symmetry, where s = 0, g, no cross 
flow is assumed 

aO a~ 
0 = 0  ~ - z = 0  m = 0  ~ s = 0 .  (10) 

At the ambient, where z = zoo, the variables of the 
entrained fluid are assumed those of the ambient (see 
next section for further discussion) 

O = 0  m = 0  qS=0. (11) 

After solutions for ~b, m and ff are obtained, local 
and overall heat transfer and drag coefficients can be 
calculated by using the following formulae : 

The local Nusselt number at the sphere surface is 
given by 

Nu(s) = - 2 ~ .  (12) 

The average Nusselt number is expressed as 

Nu = ~ Nu(s)(sins)ds. (13) 

Pressure at the front stagnation point is given by 

P0 = 2 0 4e~dz+  Gr'/~Jo ~ssdz' (14) 

where the integration is carried out at s = 0 and p is 
the 'motion' pressure, namely, the difference between 

the actual static pressure at any location and the ambi- 
ent pressure, nondimensionalized with ½P~V~ef. 

The pressure distribution along the sphere surface 
is given by 

p ( s ) = p o + 2 ( 1 - c o s s ) + ~ f i ( m + O m ) d s  a z ]  " 

(15) 

Pressure and viscous drag coefficients are expressed 
a s  

and 

CD, P = f[ p(s) (sin 2s) ds (16) 

Co,t, = 4 re(sin 2 s) ds. (17) 
0 

The total drag coefficient is given by 

C D = C D , p + C D , / j .  ( 1 8 )  

In the above equations, CD is defined as 
1 2 Fo/ipVmaxA, where FD is the total dimensional drag 

force and A is the projected arc of the sphere (nR2). 

3. METHOD OF SOLUTIONS 

The governing equations are discretized by employ- 
ing a finite volume method and solved by a false tran- 
sient algorithm. The only elliptic equation, equation 
(2.4), is solved by using a SOR algorithm [28]. Since 
most of the computations are performed on a Cray 
Y-MP, the Fortran code is vectorized to take advan- 
tage of the pipe-lined supercomputer architecture. 
Specifically, the SOR method is replaced by the GS- 
SI algorithm, which applies the Gauss-Seidel method 
in a spatially leapfrog patter n and can be completely 
vectorized [29]. Equations (7) and (8) are parabolic 
and are solved by the ADI method [30]. Along each 
of the two alternating directions, solutions are 
obtained by employing the Thomas algorithm [28]. 
The Thomas algorithm is also vectorized by storing 
variables in each column (r-direction) dynamically as 
a vector, rather than separate scalars for each row 
in the s-direction [31]. Then, the Do loops in the r- 
direction are combined within the Thomas algorithm 
to solve for all vectors simultaneously. Each com- 
pletion of the vectorized Thomas algorithm provides 
solutions for the dependent variables in the whole s-r 
plane, which achieves maximum vectorization. The 
convergence criterion used in GS-SI, ~ ,  and the cri- 
terion to check whether steady state is reached, 5,o, are 
listed in Table 1. While % is an error criterion for the 
entire flow field, G is a criterion for the surface vor- 
ticity at the sphere surface. The numerical integration 
of equations (13)-(17) is carried out by using the 
Simpson's rule. The spatial derivatives in equations 
(9), (10), (12), (14) and (15) are evaluated by the 
second or third-order Taylor series expansion. The 
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Table I. Computing parameters used for each case (10 ~< Gr <~ 108 and Pr = 0.72) 

1607 

r~ n~ Arl, n, As At e~ e~, R~, 

101 25 80 0.041 30 6 ° 5x10 -~ 5x10 -5 lx10 -5 1.8 
102 2x 10 2 
103 16 120 0.024 
104 
10 ~ 12 160 0.016 5×10 -2 2×10 -4 5×10 -~ 
106 60 3 ° 
107 8 300 7.324× 10 -3 90 2 ° 
108 360 6.103× 10 3 140 1.286 ° 

simulations are terminated when the steady state is 
approached. 

It is important to choose the location of the outer 
boundary (r~) properly to ensure an accurate numeri- 
cal solution. The employed outer boundary 
conditions, equation (11), indicate that no flow 
crosses this boundary. Furthermore, the buoyancy 
plume formed at the top of the sphere needs to be well 
within the computational domain. The above con- 
siderations demand that r~ be very large. On the other 
hand, at a high Grashof number, and as the Grashof 
number increases, the boundary layer becomes much 
thinner. Therefore: near the surface very fine grids 
have to be employed in order to correctly calculate 
the temperature and vorticity gradients inside the 
boundary layer. The choice of ro~ for each Grashof 
number is made after carefully balancing the above 
competing factors. Both the 'computational infinity' 
and the corresponding grid sizes for each simulation 
are chosen carefully by numerical tests so that all 
results presented in this study are independent of these 
choices. In additio:a, derivative boundary conditions 
at r~ have been tested. Regarding the flow, 
~ / d z  = 0 is applied, and the vorticity is obtained 
through equation (4). For the temperature boundary 
condition, the outer boundary is divided into two 
regions. For the non-plume region (vz ~< 0), ~b = 0, 
where as for the plume region (v. > 0), the zero gradi- 
ent condition, O(~/Oz = 0, is assumed. This kind of 
boundary condition allows the fluid to cross the 
boundary and assumes that convective heat transfer 
is predominant [32]. Our calculations indicate that the 
two different sets of boundary conditions at r~ have 
produced almost identical results for Nu(s) and CD at 
low Grashof numbers, as long as r~ is large enough. 
At high Grashof numbers, the local Nusselt number 
predicted by the two different boundary conditions 
are still very close, whereas CD values differ by a small 
percentage. For the highest Grashof number con- 
sidered (108), the difference in CD reaches a maximum 
of 10.5 %. The flow characteristics close to the sphere, 
such as the presence of the vortex at the top of the 
sphere and contours for temperature, streamlines and 
vorticity are the sa:aae for both sets of boundary con- 
ditions. However, far away from the sphere, the two 
flow fields differ substantially as expected. The flow 
pattern produced by using the no crossing flow bound- 

ary condition is in close resemblance to that observed 
experimentally in ref. [14], where streamline photos 
of a transient plume generated by a thermal point 
source are presented. It is observed that very few fluid 
particles move across the outer boundary. Fluid par- 
ticles from the top of the plume move downward and 
get entrained towards the axis of symmetry. More- 
over, the first kind of boundary condition is com- 
putationally less expensive and numerically more 
stable than the second kind. All numerical results pre- 
sented in the next section have been obtained by using 
the first kind of boundary condition. The relevant 
computing parameters, such as the grid sizes (As, Arls), 
the number of grids in each direction (ns, nr), the 
location of the outer boundary (r~), the temporal 
step (At), the convergence criteria (e~,, e~) and the 
relaxation factor (R~) used in GS-SI are summarized 
in Table 1. 

The central difference scheme is employed for 
Gr <~ 10 2, whereas for Gr > 102, the hybrid scheme is 
used. Both in this study and that of Riley [17] the 
central difference scheme was successfully employed 
for Grashof numbers up to 102 and 104, respectively. 
The authors in ref. [12] employed the upwind scheme 
for the entire range of Grashof numbers considered 
(0.05 < Gr < 50). They reported that central diff- 
erencing was not stable in the outer region. For small 
Grashof numbers, however, diffusion dominates in 
the region close to the sphere surface leading to Peclet 
number, Pe << 1. It is well known [28, 30] that employ- 
ing the upwind scheme at small Peclet numbers adds 
an artificial viscosity to the discretized equations. 

4. RESULTS AND DISCUSSION 

Extensive simulations were carried out only after 
the code was validated by comparing against results 
available in the literature. A simulation was conducted 
for Gr = 25 and Pr = 0.72 by employing the upwind 
scheme as in ref. [l 3]. The difference in both the Nus- 
selt number and the drag coefficient at steady state 
between our simulation and that in ref. [13] is less 
than 1.5%. In addition, the profiles of the surface 
variables are in excellent agreement. However, when 
the upwind scheme is replaced by the central difference 
scheme, which is more appropriate at such a small 
Grashof number, for reasons discussed in detail in 
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Section 3, the drag coefficient predicted in our cal- 
culation is significantly smaller (13.6%) compared to 
that reported in ref. [13]. The validity of our model is 
further confirmed by the excellent agreement between 
the Nusselt numbers predicted in the present study 
and experimental studies available in the literature 
(see Fig. 8a and the corresponding discussion in Sub- 
section 4.4). 

Results are presented for a sphere maintained at 
a temperature higher than that of the ambient for 
10 ~ ~< Gr <~ 108 and Pr -- 0.72 and 7.0. In Subsection 
4.1 characteristics of both the temperature and the 
flow fields are presented. The flow separation and the 
associated vortex in the wake of the sphere at high 
Grashof numbers is discussed in the next subsection. 
Profiles of the surface variables at different Grashof 
and Prandtl numbers are presented in Subsection 4.3. 
In the last subsection, the overall Nusselt number (bTu) 
is compared with experimental results available in the 
literature, and correlations for CD VS Gr are presented. 

4.1. Temperature and f low fields 
In Fig. 2, streamlines for Gr = 102, 104, l0  6, 108 and 

Pr = 0.72 are presented. Fluid is entrained towards 
the hot sphere and an upward flow is generated along 
the sphere surface. At the top of the sphere, hot fluid 
rises and forms a steady state buoyant plume. A stag- 
nation ring is formed above the sphere, which moves 
downward with increasing Grashof number. Fur- 
thermore, the diameter of the ring decreases with 
increasing Grashof number. At low Grashof numbers 
most of the entrainment comes from the bottom of 
the sphere, whereas at high Grashof numbers it comes 
from the side. A similar observation has been reported 
by Kuehn and Goldstein [32] for natural convection 
over a horizontal cylinder. Figure 3 shows the tem- 
perature contours for the same Grashof and Prandtl 
numbers. A mushroom-shaped front is clearly indi- 
cated by the temperature contours, similar to that 
generated by a horizontal hot wire [33]. Both the 
length and the 'thickness' of the steady state plume 
decrease with increasing Grashof number. The ther- 
mal boundary layer thickness 6v varies weakly along 
the sphere in the lower part, whereas towards the top 
of the sphere, it increases dramatically. Convective 
heat transfer becomes dominant with increasing Gra- 
shof number, and 6v decreases substantially. For 
Gr >~ 10 6, 6- r becomes much smaller than R and the 
thin boundary layer assumption becomes applicable. 
However, the thin boundary layer assumption is valid 
only for 0 up to approximately 150 and 160 ° for 
Gr = 106 and 108, respectively. 

Figure 4 shows both the tangential and radial vel- 
ocity profiles with radial distance from the sphere 
surface for Gr = 106 and Pr = 0.72. For approxi- 
mately 0 < 150 °, the tangential velocity profiles are 
very similar to those predicted by the boundary 
layer theory ; they increase steeply to a maximum and 
then decrease steeply towards zero outside the 
hydrodynamic boundary layer. Furthermore, the 

maximum in Vo increases with 0. However, for angles 
close to 0 = n, the plume begins to form. The tan- 
gential velocity profiles for these angles manifest a 
wider maximum due to the thickening of the boundary 
layer. The maximum in Vo decreases with 0 for these 
angles. Very close to 0 = n, the maximum in Vo is 
hardly recognizable. For 0 = 174 °, for example, vo 
first increases and then remains almost independent 
of the radial distance. Radial velocities are negative 
and of small magnitude for 0 approximately less than 
120 °. Therefore, the range, 0 ~< 0 ~< 120 °, may be con- 
sidered as the inflow region in the simulations. For 
higher values of 0, vr profiles are positive and present a 
maximum along the radial direction, which is moving 
outward with further increase in 0. For even higher 
values of 0, such as 0 = 174 °, Vr increases mono- 
tonically and remains level for a range of one to two 
radii before decaying to zero. 

4.2. Recirculation vortex on the top o f  a sphere 
In order to resolve both the thin boundary layers 

and the structure of the plume in the wake of the 
sphere, very fine grids had to be adopted (A0 = 2 ° and 
Ar]s = 7.324× 10-3 for Gr = 10V, andA0 = 1.286° and 
Ar]s--6.103x 10 3 for Gr = 108). The streamlines 
shown in Fig. 5 reveal that a small recirculation vortex 
and associated flow separation indeed exist in the 
wake of the sphere for large Grashof numbers. At 
Gr = 107, a very small vortex is predicted. The size of 
the vortex increases with Grashof number as shown 
for Gr = 108. In forced convective flow past a sphere, 
separation occurs in the wake of the sphere because 
fluid particles lose their momentum and are not able 
to overcome the adverse pressure gradient imposed by 
the external flow. Unlike the forced convective flow, 
there is no external pressure gradient imposed on the 
boundary layer for natural convection, since the flow 
is driven by the buoyancy force. Fluid particles con- 
tinuously gain momentum as they translate past the 
sphere surface. As a result, the adverse pressure gradi- 
ent which develops in the wake of the sphere and 
becomes steeper with increasing Grashof number (see 
Fig. 6a) can cause flow separation with a recirculation 
vortex only at extreme values of Grashof numbers. 
Even at Gr = 108, the axial extent of the vortex is very 
small. The angular extent, however, is much larger, so 
that the axisymmetric vortex resembles a thin cap 
attached to the top of the sphere; a circumstance 
difficult to either detect experimentally or resolve com- 
putationally. Since it has not been reported before 
that a vortex may be present in the wake of a sphere 
for natural convection heat transfer, an exhaustive 
examination was undertaken, to ensure that its pres- 
ence is not due to some modeling deficiency. Thus, the 
following extensive numerical tests have been con- 
ducted for Gr = 10 v, 108 and Pr = 0.72: (a) the size 
of the grids in both directions was varied, (b) the 
location of the outer boundary was varied and, (c) the 
two different sets of boundary conditions for the outer 
boundary, which have been discussed in detail in Sec- 
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Fig. 2. Streamlines for Gr = 102, 104, 10  6, 108. Pr = 0.72. 

tion 3, have been te:~ted as well. It is found that for all 
numerical tests described above, the vortex is present 
and its shape, size and structure remain invariant. 

4.3. Profiles of  surfi~ce pressure, vorticity and Nusselt 
number 

Figure 6 presents the surface pressure and vorticity 
distribution for Pr == 0.72 and 7.0. For  Pr = 0.72, the 
pressure recovery in the rear of  the sphere increases 

with Grashof  number. For  the high Grashof  numbers 
considered, the adverse pressure gradient is strong 
enough to cause flow separation associated with a 
recirculation vortex in the wake of  the sphere as was 
discussed in Subsection 4.2. Fo r  Pr = 7.0, the pressure 
variation along 0 is less dramatic compared to that 
for Pr = 0.72, especially for high Grashof  numbers, 
showing weaker pressure recovery. 

At  Gr = 102 and Pr = 0.72, the diffusive mode of  
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Fig. 3. Temperature contours for Gr = 102, 104, 106, 108. Pr = 0.72. 

vorticity transport is predominant,  as indicated by 
the approximately symmetric profile of  the surface 
vorticity distribution. However,  with increasing Gra- 
shof number, the convective transport of  vorticity 
dominates. The resulting surface vorticity profiles 
deviate from symmetry increasingly with Grashof  
number. For  Gr = 107 and 108 the surface vorticity 
becomes negative in the region around 0 = n, due to 

the vortex at the top of  the sphere. For  Pr = 7.0, even 
at Gr = 102 the surface vorticity profile is substantially 
asymmetric. At  Pr = 7.0, negative vorticity in the rear 
of  the sphere has not  been found for Grashof  numbers 
up to 10 7. It may appear at a higher Grashof  number. 
However,  the simulation for Gr = 108 and Pr = 7.0 
requires even finer grids than the one for Gr = 108 
and Pr = 0.72, due to the very thin thermal boundary 
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Fig. 4. (a) Tangential velocity profiles. (b) Radial velocity profiles : Gr = 106, Pr = 0.72. 

layer. This stringent requirement makes the numerical 
calculation extremely intensive and has not  been 
pursued. 

Figure 7a presents the local Nusselt number as a 
function of  0 for Pr = 0.72. At  low and moderate 
Grashof  number,  Nusselt number decreases mon-  
otonically with 0 because of  the thickening of  the 
thermal boundary layer along the sphere surface. The 
same trend is followed for Grashof  numbers up to 
10 6. However,  for Gr >1 10 7, the recirculation vortex 
formed in the wake of  the sphere, entrains colder fluid, 
causing the local Nu~iselt number to increase with 0 in 

the rear of  the sphere after a minimum is reached. The 
increase is rather sharp at Gr = 108. The minimum Nu 
is located before the separation point. Results of  the 
local Nusselt number for Pr = 7.0 are presented in 
Fig. 7b. The local Nusselt number decreases mon- 
otonically with 0 for all Grashof  numbers shown. 

4.4. Overall Nusselt number and drag coefficients 
Figure 8a shows the overall Nusselt number as a 

function of  the Grashof  number for Pr = 0.72 and 
7.0. The present results are in very good agreement 
with the correlations recommended in experimental 
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Fig. 5. Detailed flow structure (streamlines) in the wake of the sphere for Gr = 10 7 and l0 s. Pr = 0.72. 

studies. Mathers et al. [18] have recommended 
~Vu = 2 +0.282(GrDPr) 1/4 for GrDPr <~ 10 z and 
Nu = 2 +0.5(GrDPr)l/4 for 10 z ~< GrDPr <~ 106. Amato 
and Tien [20] have recommended the same correla- 
tion as that of Mathers et al. [18] for 
3 × 105 ~< GrDPr ~< 8 × 108. The solid lines in Fig. 8a 
correspond to Churchill's correlation [25] which 
includes a more involved Prandtl number dependence 
in the form 

0.589Ra 1/4 
Nu = 2+ (19) 

[1 + (0.469/Pr)9/~6] 4/9" 

Table 2 provides a comparison of the numerically 
predicted overall Nusselt numbers (~Tu) with various 
correlations for different Grashof numbers and 
Pr = 0.72. 

Figure 8b presents the viscous, pressure and total 
drag coefficients as a function of Grashof number for 
Pr = 0.72. At small Grashof numbers, the viscous 
drag is more important. The ratio of viscous drag to 
pressure drag is approximately 2 : 1, similar to forced 
convection over a sphere at small Reynolds number 
[34]. As the Grashof number increases, the relative 
contribution of pressure drag increases. At a high 
Grashof number, the pressure drag becomes pre- 
dominant. In the case of forced convection past a 
sphere, Cr~ is insensitive to Re for 750 ~< Re <<. 105 [34], 
because the surface pressure distribution, which is the 
predominant drag component changes remarkably 
little with Re. However, for natural convection over 
a sphere, Co keeps decreasing with Gr due to the 
increase in pressure recovery with increasing Grashof 
number (see Fig. 6a). The total drag coefficient for 
101 ~< Gr <~ 108 has been correlated using least square 
regression. For Pr = 0.72 

logCo = 1.3205-0.3753w+0.0134w 2, (20) 

where w = log Gr. 

For Pr = 7.0 

1OgCD = 0.9011--0.2666W--0.0003W 2. (21) 

The solid line in Fig. 8b was obtained using equa- 
tion (20). The square of the linear correlation 
coefficients in equations (20) and (21) are 0.9996 and 
0.9988, respectively. 

The overall Nusselt number, the viscous, pressure 
and total drag coefficients from all simulations in this 
study are presented in Table 3. 

5. CONCLUSIONS 

Steady-state natural convection heat transfer over 
a sphere whose temperature is higher than that of its 
ambient has been studied numerically for a wide range 
of Grashof numbers (101 ~< Gr <<. 108) and Prandtl 
numbers of 0.72 and 7.0. 

A steady state buoyancy plume with a mushroom- 
shaped front, forms above the ~phere whose length 
and thickness decrease with increasing Grashof 
number. 

A small recirculation vortex and associated flow 
separation are present in the wake of the sphere for 
large Grashof numbers. The size of the vortex 
increases with increasing Grashof number and its 
shape resembles a thin cap attached to the top of the 
sphere. 

The vortex is responsible for the sharp increase in 
the local Nusselt number near the top of the sphere. 

Unlike forced convection over a sphere, where the 
drag coefficient is insensitive to Reynolds number over 
a wide range, for natural convection over a sphere, 
the drag coefficient keeps decreasing with increasing 
Grashof number due to the increase in surface pres- 
sure recovery with increasing Grashof number. 

The numerically predicted overall Nusselt number 
is in excellent agreement with experimental results 
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Fig. 8. (a) Overall Nusselt number  as a function of Grashof  
number.  (b) The pressure, viscous and total drag coefficients 

as a function of  Grashof  number  for Pr  = 0.72. 

Table 2. Compar ison of the numerically predicted overall Nusselt  numbers  (Nu) with various correlations as a function of 
Grashof  number  for P r  = 0.72 

10 ~ 102 103 104 105 106 107 108 

Present study 2.93 3.92 5.65 8.74 14.22 24.56 41.81 75.35 
Mathers  et  al. [18] 3.26 4.45 6.36 9.75 15.77 26.49 45.56 79.46 
Hassani  et al. [21] 3.26 4.24 5.98 9.07 14.57 24.35 41.75 72.69 
Raithby et al. [26] 3.27 4.26 6.02 9.14 14.70 24.59 42.17 73.44 
Jafarpur et  al. [27] 3.26 4.25 6.00 9.11 14.64 24.48 41.98 73.10 

Table 3. Overall Nusselt  number  (2qu), pressure (Co,p), viscous (Co,u) and total ( C D )  drag coefficients for 
101 ~< Gr <~ 108 and Pr  = 0.72 and 7.0, 

101 102 103 104 105 106 107 108 

Pr  = 0.72 37u 2.93 3.92 5.65 8.74 14.22 24.56 41.81 75.35 
Co,p 3.27 1.51 0.80 0.46 0.27 0.20 0.12 0.109 
Co,, 6.07 2.60 1.23 0.62 0.32 0.17 0.094 0.051 
CD 9.34 4.11 2.03 1.08 0.59 0.37 0.214 0.160 

P r  = 7.0 ~Tu 4.32 6.41 10.01 16.72 28.74 49.85 89.62 
Co,p 1.87 0.88 0.47 0.27 0.15 0.078 0.043 
CD,, 3.31 1.50 0.74 0.39 0.21 0.112 0.062 
Co 5.18 2.38 1.21 0.66 0.36 0.190 0.105 
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available in the literature. Correlations for the drag 
coefficient are presenLed over a wide range of Grashof 
numbers. 

Acknowledgements~omputational work was performed on 
the NSF National Center for Supercomputing Applications 
at the University of HLinois at Urbana-Champaign under 
grant no. CBT920039N. The support of this computing 
facility is greatly appreciated. 

REFERENCES 

I. B. Gebhart, Y. Jaluria, R. L. Mahajan and B. Sammakia, 
Buoyancy-Induced Flows and Transport, p. 212. Hemi- 
sphere Publishing Corporation, New York (1988). 

2. D. R. Dudek, T. H. Fletcher, J. P. Longwell and A. 
F. Sarofim, Natural convection induced drag forces on 
spheres at low Grashof numbers : comparison of theory 
with experiment, Int. J. Heat Mass Transfer 31,863-873 
(1988). 

3. H. J. Merk and J. A. Prins, Thermal convection in lam- 
inary boundary layers, Appl. Sci. Res., Series A 4, 11-24 
(1953). 

4. H. J. Merk and J. A. Prins, Thermal convection in lam- 
inary boundary layers, Appl. Sci. Res., Series A 4, 195- 
206 (1954). 

5. H. J. Merk and J. A. Prins, Thermal convection in lam- 
inary boundary layers, Appl. Sci. Res., Series A 4, 207- 
221 (1954). 

6. A. Acrivos, A theoretical analysis of laminar natural 
convection heat transfer to non-Newtonian fluids, 
AIChE J. 6, 584-590 (1960). 

7. T. Chiang, A. Ossin and C. L. Tien, Laminar free con- 
vection from a sphere, J. Heat Transfer 86, 537 542 
(1964). 

8. J. M. Potter and N. Riley, Free convection from a heated 
sphere at large Grashof number, J. Fluid Mech. 100, 
769-783 (1980). 

9. F. E. Fendell, Larainar natural convection about an 
isothermal heated sphere at small Grashof number, J. 
FluidMech. 34, part 1,163 176 (1968). 

10. A. Hossain and B. Gebhart, Natural convection about 
a sphere at low Grashof number, Heat Transfer IV, 
Proceedings of  Inteynational Heat Transfer Conference, 
NC 1.6, (1970). 

11. S. N. Singh and M. M. Hasan, Free convection about a 
sphere at small Grashof number, Int. J. Heat Mass 
Transfer 26~ 781-783 (1983). 

12. F. Geoola and A. R. H. Cornish, Numerical solution of 
steady state free ccnvective heat transfer from a solid 
sphere, Int. J. Heat Mass Transfer 24, 1369-1379 (1981). 

13. F. Geoola and A. R. H. Cornish, Numerical simulation 
of free convective heat transfer from a sphere, Int. J. 
Heat Mass Transfer 25, 1677 1687 (1982). 

14. D. J. Shlien and R. L. Boxman, Laminar starting plume 
temperature field measurement, Int. J. Heat Mass Trans- 
fer 24, 919-931 (1981). 

15. B. Farouk, Natural convection heat transfer from an 
isothermal sphere, Therm. Sci. 16, 347-364 (1983). 

16. T. Fujii, T. Honda and M. Fujii, A numerical analysis 
of laminar free convection around an isothermal sphere : 
finite-difference solution of the full Navier-Stokes and 
energy equations between concentric spheres, Numer. 
Heat Transfer 7, 103 111 (1984). 

17. N. Riley, The heat transfer from a sphere in free con- 
vective flow, Comput. Fluids 14, 225-237 (1986). 

18. W. G. Mathers, A. J. Maddern Jr and E. L. Piret, Sim- 
ultaneous heat and mass transfer in free convection, Ind. 
Engng Chem. 49, 961-968 (1957). 

19. T. Yuge, Experiments on heat transfer from spheres 
including combined natural and forced convection, J. 
Heat Transfer 82, 214-220 (1960). 

20. W. S. Amato and C. Tien, Free convection heat transfer 
from isothermal spheres in water, Int. J. Heat Mass 
Transfer 15, 327-339 (1972). 

21. A. V. Hassani and K. G. T. Hollands, On natural con- 
vection heat transfer from three-dimensional bodies of 
arbitrary shape, J. Heat Transfer 111, 363 371 (1989). 

22. A. A. Kranse and J. Schenk, Thermal free convection 
from a solid sphere, Appl. Sci. Res. 15, 397-403 (1965). 

23. J. Schenk and F. A. M. Schenkels, Thermal free con- 
vection from an ice sphere in water, Appl. Sci. Res. 19, 
465-476 (1968). 

24. Y. Jaluria and B. Gebhart, On the buoyancy-induced 
flow arising from a heated hemisphere, Int. J. Heat Mass 
Transfer 18, 415-431 (1975). 

25. S.W. Churchill, Comprehensive theoretically based, cor- 
relating equations for free convection from isothermal 
spheres, Chem. Engng Commun. 24, 339-352 (1983). 

26. G. D. Raithby and K. G. T. Hollands, A general method 
of obtaining approximate solutions to laminar and tur- 
bulent free convection problems, Adv. Heat Transfer 11, 
266-315 (1975). 

27. K. Jafarpur and M. M. Yovanovich, Laminar free con- 
vective heat transfer from isothermal sphere : a new ana- 
lytical method, Int. J. Heat Mass Transfer 35, 2195 2201 
(1992). 

28. S.V. Patankar, NumericalHeat Transfer and Fluid Flow, 
pp. 56--57; 52 53; 61 62; 85-86. Hemisphere, New 
York (1980). 

29. D.M. Young, Iterative Solution of  Large Linear Systems, 
pp. 367-372. Academic Press, San Diego (1971). 

30. P. J. Roache, Computational Fluid Dynamics, pp. 91-94; 
64-67. Hermosa Albuquerque, NM (1976). 

31. C. H. Chuan and W. C. Schreiber, The simulation of 
convective solidification using 3-D computer code vec- 
torized for optimum performance on supercomputers in 
Science and Engineering on Supercomputers (Edited by 
E. C. Pitcher), pp. 431-442. Computational Mechanics 
Publications; Springer, New York (1990). 

32. T. H. Kuehn and R. J. Goldstein, Numerical solution to 
the Navie~Stokes equations for laminar natural con- 
vection about a horizontal isothermal circular cylinder, 
Int. J. Heat Mass Transfer 23, 971 979 (1980). 

33. C. M. Vest and M. L. Lawson, Onset of convection near 
a suddenly heated horizontal wire, Int. J. Heat Mass 
Transfer 15, 1281-1283 (1972). 

34. R. Clift, J. R. Grace and M. E. Weber, Bubbles, Drops 
and Particles, pp. 108; 122. Academic Press, New York 
(1978). 


